Slopes of Secant and tangent Lines

- 1. Suppose f'(x) is decreasing for $2 \le x \le 7$. Let y = L(x) represent the equation of the linear function tangent to the graph of f at the point (2, f(2)). Which of the following is true? (*Hint: Draw a picture.*)
 - (a) L(3) > f(3).
 - (b) L(3) < f(3).
 - (c) L(3) = f(3).
 - (d) There is not enough information to compare L(3) and f(3).

2. The equation of the line tangent to the graph of $f(x) = \sin(x)$ when $x = \frac{\pi}{6}$ is:

(a)
$$y = -\frac{\sqrt{3}}{2} \left(x - \frac{\pi}{6} \right) - \frac{1}{2}$$

(b) $y = -\cos(x) \left(x - \frac{\pi}{6} \right) + \frac{\sqrt{3}}{2}$
(c) $y = \frac{1}{2} \left(x - \frac{\pi}{6} \right) + \frac{\sqrt{3}}{2}$
(d) $y = \cos(x) \left(x + \frac{\pi}{6} \right) + \frac{1}{2}$
(e) $y = \frac{\sqrt{3}}{2} \left(x - \frac{\pi}{6} \right) + \frac{1}{2}$

3. The graph of the function y = f(x) is below. Note that the scales on the x and y axes are the same. Which of the following inequalities is true?

a.
$$\lim_{h \to 0} \frac{f(a+h) - f(a)}{h} < f(b) - f(a) < \frac{f(b) - f(a)}{b - a}$$

- **b.** $\frac{f(b) f(a)}{b a} < \lim_{h \to 0} \frac{f(a + h) f(a)}{h} < f(b) f(a)$
- c. $\lim_{h \to 0} \frac{f(a+h) f(a)}{h} < \frac{f(b) f(a)}{b-a} < f(b) f(a)$

d.
$$f(b) - f(a) < \frac{f(b) - f(a)}{b - a} < \lim_{h \to 0} \frac{f(a + h) - f(a)}{h}$$

e.
$$\frac{f(b) - f(a)}{b - a} < f(b) - f(a) < \lim_{h \to 0} \frac{f(a + h) - f(a)}{h}$$

4. Suppose $f'(a) > \frac{f(a + \Delta x) - f(a)}{\Delta x}$ for $\Delta x > 0$. Which of the following could be a graph of f?

- a. I only
- b. II only
- c. II and III only
- d. I and IV only
- e. III and IV only

5. Consider the graph of y = f(x) illustrated below.

Write each graphical quantity, A-F, in the blank next to corresponding expression on the left. *Each letter will be used exactly once.*

Expression	Graphical Quantity
h	 А
f(a)	 В
f(a+h)	 С
f(a+h) - f(a)	 D
$\frac{f(a+h) - f(a)}{h}$	 Е
$\lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$	 F