Slopes of Secant and tangent Lines

1. Suppose $f^{\prime}(x)$ is decreasing for $2 \leq x \leq 7$. Let $y=L(x)$ represent the equation of the linear function tangent to the graph of f at the point $(2, f(2))$. Which of the following is true? (Hint: Draw a picture.)
(a) $L(3)>f(3)$.
(b) $L(3)<f(3)$.
(c) $L(3)=f(3)$.
(d) There is not enough information to compare $L(3)$ and $f(3)$.
2. The equation of the line tangent to the graph of $f(x)=\sin (x)$ when $x=\frac{\pi}{6}$ is:
(a) $y=-\frac{\sqrt{3}}{2}\left(x-\frac{\pi}{6}\right)-\frac{1}{2}$
(b) $y=-\cos (x)\left(x-\frac{\pi}{6}\right)+\frac{\sqrt{3}}{2}$
(c) $y=\frac{1}{2}\left(x-\frac{\pi}{6}\right)+\frac{\sqrt{3}}{2}$
(d) $y=\cos (x)\left(x+\frac{\pi}{6}\right)+\frac{1}{2}$
(e) $y=\frac{\sqrt{3}}{2}\left(x-\frac{\pi}{6}\right)+\frac{1}{2}$
3. The graph of the function $y=f(x)$ is below. Note that the scales on the x and y axes are the same. Which of the following inequalities is true?

a. $\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}<f(b)-f(a)<\frac{f(b)-f(a)}{b-a}$
b. $\frac{f(b)-f(a)}{b-a}<\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}<f(b)-f(a)$
c. $\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}<\frac{f(b)-f(a)}{b-a}<f(b)-f(a)$
d. $f(b)-f(a)<\frac{f(b)-f(a)}{b-a}<\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}$
e. $\frac{f(b)-f(a)}{b-a}<f(b)-f(a)<\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}$
4. Suppose $f^{\prime}(a)>\frac{f(a+\Delta x)-f(a)}{\Delta x}$ for $\Delta x>0$. Which of the following could be a graph of f ?

II.

IV.

a. I only
b. II only
c. II and III only
d. I and IV only
e. III and IV only
5. Consider the graph of $y=f(x)$ illustrated below.

Write each graphical quantity, A-F, in the blank next to corresponding expression on the left. Each letter will be used exactly once.

Expression

h
$f(a) \quad$

$$
f(a+h)
$$

$$
f(a+h)-f(a)
$$

$$
\frac{f(a+h)-f(a)}{h}
$$

$$
\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
$$

\qquad

Graphical Quantity
A
B

C

D

E

F

